
S.N.A.P
Scaleable Node Address Protocol

© 1998-2002 HTH, Document revision 1.03

Protocol version 1.00
Document revision 1.03

Preface.

Thanks for your interest in the S.N.A.P network protocol. Our goal was to define a simple and
generic network protocol that could be used in many different types of microcontroller applications
as well for educational purposes. We are not implying that S.N.A.P will solve all network problems
in this universe because it won't! There may be other protocols that suit your specific application
better. Never the less we think S.N.A.P is a great protocol for it's intended use and therefore we
decided to share it with the rest of the community.

Our priority has been to keep it as simple as possible and our internal mantra has been KISS (Keep
It Simple Stupid). It's harder than one can imagine balancing technical advanced functions with
simplicity and we have had many ideas that we scraped due to the reason that it would increase the
learning curve and make it harder to implement. The persons involved in the development of
S.N.A.P all have many years background as teachers and knows how important it is to keep things
simple for easy understanding. Something to remember is that you many times can build advanced
functions even if you are using very simple tools!

One drawback with defining such a flexible network protocol is that it makes it almost impossible
to define everything since many parameters (such as timing etc.) depends on what kind of media
being used. We could have defined S.N.A.P to be used with our PLM-24 Power Line Modems
only and with strict timing information but then it wouldn't be so versatile as we wanted it.

This document version specifies the S.N.A.P packet framing format. Consider S.N.A.P as an
ongoing project that we will continue to work on and add more functionality to over time. We hope
you find our work useful and welcome you to e-mail comments, suggestions and ideas. Due to the
amount of e-mails received we are not always able to reply to you personally but we do read all
e-mails.

Note that the purpose of this S.N.A.P documentation is not to be a complete book with answers on
every question that may arise (we may eventually do something like that in the future). However, we
have done our best in given time to provide enough information to get you started and the best way
to learn how S.N.A.P works in reality is to start experiment with it and study the source code
examples that is available on our web-site.

In short, if you find S.N.A.P useful then feel free to use it and all we ask is that you give credit
where credit is due and if S.N.A.P doesn't suit your specific needs then you should consider using
another network protocol.

Good luck with your projects!

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 1 -

Document revision 1.03

1.0 Introduction.

Why yet another protocol? Because we at HTH needed a protocol for our PLM-24 based home
automation system. After studying several other protocols available we decided to sit down and
define a generic protocol that gave us the flexibility we was looking for. We wanted a protocol that
could easily be implemented in small microcontrollers with very limited computing and memory
resources. We also wanted to be able to use the same protocol in larger systems. The solution was to
make the protocol scaleable.

S.N.A.P allows for different packet length and different protocol complexity. It can be used as a
very simple protocol without any flags or error detection, or the programmer can use up to 24 flags
and any of the defined error detection methods, depending on the current need (or personal skill).
Since S.N.A.P is scaleable, both simple (read as cheap) and sophisticated nodes can communicate
with each other in the network.

That is what makes S.N.A.P unique!

Features.

- Easy to learn, use and implement.

- Free and open network protocol.

- Free development tools available.

- Scaleable binary protocol with small overhead.

- Requires minimal MCU resources to implement.

- Up to 16.7 million node addresses.

- Up to 24 protocol specific flags.

- Optional ACK/NAK request.

- Optional command mode.

- 8 different error detecting methods (Checksum, CRC, FEC etc.).

- Can be used in master/slave and/or peer-to-peer.

- Supports broadcast messages.

- Media independent (power line, RF, TP, IR etc.).

- Works with simplex, half-, full- duplex links.

- Header is scaleable from 3-12 bytes.

- User specified number of preamble bytes (0-n).

- Works with synchronous and asynchronous communication.

- Works with our free PLM-24 < > TCP/IP Gateway software.

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 2 -

Document revision 1.03

1. 1 What can S.N.A.P be used for?

We developed S.N.A.P primarily for use in home automation and control systems but it is a generic
protocol and not limited to this. S.N.A.P can be used in any type of applications where an easy to
learn and flexible network protocol is needed.

1.2 How small MCU's can be used?

S.N.A.P can be implemented in almost any MCU available today. Our first S.N.A.P testprogram
ran on a BASIC Stamp I from Parallax Inc. It sent 1 Byte data and used 16-bit CRC as error
detection method. This tiny microcontroller has only 14 Bytes of available RAM. As another node
in the network we used a standard Pentium II PC and the nodes were communicating over the mains
using PLM-24 Power Line Modems.

1.3 Is S.N.A.P easy to learn?

As mentioned before it can be scaled down and used as a very simple protocol and is therefore easy
to learn. This also means it's great for educational purposes and for electronic hobbyists. And many
of the professionals appreciate it, since it's easy to implement and a very flexible protocol.

1.4 Using S.N.A.P in commercial applications.

S.N.A.P is free for private and commercial (requires a vendor ID#) use. All that we ask in return is
that you give credit where credit is due and that you enclose the latest version of this original
PDF-file (or a link to our web-site) with your applications/products.

If you intend to use S.N.A.P in any commercial application you must request a vendor ID#. This
will not cost anything. For details on how to request your own vendor ID# see our web-site at...

http://www.hth.com/snap/

1.5 Support.

S.N.A.P is released "AS IS" and we are not able to provide any free support.

1.6 Future development of S.N.A.P.

We reserve us the right to change, modify or enhance the S.N.A.P network protocol without any
prior notice. Our intention is to enhance S.N.A.P with more features in the future. To stay
up-to-date with the development of S.N.A.P feel free to join our mailing list, details at the end of
this document. We welcome any feedback and suggestions from users. We are aware about some
missing information such as collision detection an recommended time-out values. This will be
included in a future revision of this document.

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 3 -

Document revision 1.03

2.0 Protocol description.

Below is the structure of S.N.A.P described. Before we begin a few words of explanation. All
communication between network nodes, is in the form of packets. These packets can be of different
length. The total packet length will depend on how many address bytes (0-6 Bytes) you decide to
use, how many flags bytes (0-3 Bytes), how much data you want to send (0-512 Bytes) and what
error detection method you use. All of this is defined in the header definition bytes (HDB2 and
HDB1).

Each packet could be preceded with optional preamble bytes (0-n). The packet starts with a unique
byte (010101002). This byte is called the synchronization byte. Any type of preamble characters can
be used as long as they are not the same as the synchronization byte.

In the example below you see a small S.N.A.P packet with the following structure.

SYNC Synchronization byte
HDB2 Header Definition Byte 2
HDB1 Header Definition Byte 1
DAB1 Destination Address Byte
SAB1 Source Address Byte
DB1 Data Byte 1
CRC2 High byte of CRC-16
CRC1 Low byte of CRC-16

CRC1CRC2DB1SAB1DAB1HDB1HDB2SYNCn bytes preamble

The total length of this packet would be 8 Bytes (excluding the optional preamble bytes). All bytes
within a group are positioned with the least significant byte to the right.

2.1 Synchronization byte - SYNC.

This byte is pre-defined to 010101002 and indicates the start of each packet.

00101010

01234567Bit

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 4 -

Document revision 1.03

2.2 Overview of header definition bytes (HDB2 and HDB1).

The first two bytes after the synchronization byte are called header definition bytes, they are used to
define the structure of the complete packet. The name on the fields are chosen to be easy to
remember.

N
D
B

E
D
M

C
M
D

A
C
K

P
F
B

S
A
B

D
A
B

NNNNEEECAAPPSSDD

01234567Bit01234567Bit

HDB1HDB2

DAB = Number of Destination Address Bytes
SAB = Number of Source Address Bytes
PFB = Number of Protocol specific Flag Bytes
ACK = ACK/NAK bits
CMD = CoMmanD mode bit
EDM = Error Detection Method
NDB = Number of Data Bytes

2.3 Header Definition Byte 2 - HDB2.

AAPPSSDD

01234567Bit

Bit 7 and 6 - Destination Address Bytes (DAB)

These two bits defines number of destination address bytes in the packet. With the maximum size of
3 Bytes it gives a total of 16 777 215 different destination node addresses.

3 Bytes destination address11

2 Bytes destination address01

1 Byte destination address10

0 Byte destination address00

67Bit

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 5 -

Document revision 1.03

Bit 5 and 4 - Source Address Bytes (SAB)

These two bits defines the number of source address bytes in the packet. With the maximum size of
3 Bytes, it gives a total of 16 777 215 different source node addresses.

3 Bytes source address11

2 Bytes source address01

1 Byte source address10

0 Byte source address00

45Bit

Bit 3 and 2 - Protocol specific Flag Bytes (PFB)

These two bits defines how many protocol specific flag bytes the packet includes, from 0-3 Bytes
which give a total of 24 flags.

3 Bytes flags11

2 Bytes flags01

1 Byte flags10

0 Byte flags00

23Bit

Bit 1 and 0 - ACK/NACK Bits (ACK)

These two bits defines if the sending node requests an ACK/NAK packet in return. These bits also
acts as the actual ACK/NAK response sent from the receiving node.

NAK response (Rx)11

ACK response (Rx)01

ACK request (Tx)10

No ACK request (Tx)00

01Bit

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 6 -

Document revision 1.03

2.4 Header Definition Byte 1 - HDB1.

NNNNEEEC

01234567Bit

Bit 7 - Command mode bit

This bit indicates what's called command mode. This is an optional feature and if a node is not
implementing it this bit should always be set to zero (CMD=0).

A node implementing this feature will be able to respond on queries from other nodes as well as
send responses when for example the receiving node can't handle the packet structure in a received
packet. It can be used to scan large networks for nodes and have them respond with their
capabilities or for two nodes negotiating the right packet structure, among other things.

If this bit is set (CMD=1) it indicates that the data in DB1 contains a command (query or a
response). This results in total 256 different commands.

The range is divided in two half's, commands between 1-127 are queries and commands between
128-255 are responses. The commands specified to date are the following. Note this is the value in
DB1, not the actual CMD bit.

Reserved but not yet defined255Reserved but not yet defined127

............

Reserved but not yet defined130Reserved but not yet defined2

Preferred packet structure129Preferred packet structure?1

Command mode supported128Command mode supported?0

ResponseCMDQueryCMD

There are some things to think about for this to work properly. The sending node can not use an
higher address range than the receiving node. This is not a problem if the receiving nodes that are
implementing this feature are capable to handle all the address range (i.e. 1-16 777 215). Another
solution is to assign all masters in the network (in a master/slave network) to the low address range
(i.e. between 1-255).

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 7 -

Document revision 1.03

Bit 6 to 4 - Error Detection Method (EDM)

These three bits defines what kind error detecting method is being used to validate the packet. A
node does not need to support any error detection method at all (i.e. EDM = 0) or you can choose to
implement a subset or all of them. For more information about this topic see section 2.6.

User specified111

FEC (specific FEC standard TBD)011

32-bit CRC101

16-bit CRC001

8-bit CRC110

8-bit checksum010

3 times re-transmission100

No error detection000

456Bit

TBD = To Be Determined

Bit 3 to 0 - Number of Data Bytes (NDB)

These four bits defines how many bytes data there is in the packet (0-512 Bytes).

User specified1111

512 Bytes0111

256 Bytes1011

128 Bytes0011

64 Bytes1101

32 Bytes 0101

16 Bytes1001

8 Bytes0001

7 Bytes1110

6 Bytes0110

5 Bytes1010

4 Bytes0010

3 Bytes1100

2 Bytes0100

1 Byte1000

0 Byte0000

0123Bit

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 8 -

Document revision 1.03

2.5 Protocol specific Flag Bytes (PFB3-PFB1).

These three flag bytes are reserved but not yet defined. They are intended for future enhancements
of S.N.A.P. They will be defined in a future protocol version and should not be used!

Below are some ideas for their use and we welcome any further comments and suggestions.

 - Remote reset
 - Remote re-programming
 - Remote configuration
 - Media traverse flag
 - Data encryption flag
 - Extended command mode
 - Routing information flag
 - Repeater flag
 - Packet counter
 - Time sync flag
 - Packet numbering
 - Packet priority levels
 - Data streaming

Bit 7 to 0 - PFB3

DEVRESER

01234567Bit

Eight protocol specific flags. Specific functions TBD.

Bit 7 to 0 - PFB2

DEVRESER

01234567Bit

Eight protocol specific flags. Specific functions TBD.

Bit 7 to 0 - PFB1

DEVRESER

01234567Bit

Eight protocol specific flags. Specific functions TBD.

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 9 -

Document revision 1.03

2.6 General information about different EDM.

Below is a brief overview of the different error detection methods supported by S.N.A.P. Some of
you may ask why there are more than one error detection mode available?

The reason to why S.N.A.P supports different error detection methods comes from the idea of
making a light weighted generic network protocol that could be used over any media available, such
as cables, RF, IR, power line etc. Also by offering none or simple error detecting methods very
simple S.N.A.P nodes (using logic gates) could coexist with more sophisticated nodes on the same
network.

A simple way to view it is that some medias are more reliable than others. Using a 32-bit CRC
checksum on data sent just a few centimeters between two MCU's directly connected to each other
on the same PCB would be overkill. In this case it would be wiser to use no error detection at all
since it's very rare packets get corrupted in a design like this.

But if the same data should be sent over RF or the power lines where noise and other disturbances
are a fact you would probably want to use a higher degree of error detection to make sure that the
data sent and received are correct.

It's not only the type of media that you have to take into consideration when selecting a error
detection method. Factors like datapacket size, preferred overhead and if the communication link is
bi-directional all affects the decision.

S.N.A.P supports the following error detection methods...

No error detection

This one is obvious. Packets will be sent without any error detection information at all.

3 times re-transmission

This is a very simple way of error detection that is very easy to implement. The sending node
send the exact same packet three times.The receiving node just compare the received packets
and if 3 equal packets are received then the data is assumed to be OK.

8-bit checksum

This method adds one byte (8-bits) containing the checksum at the end of each packet. The
calculation of the checksum is simple and all that’s done is that all bytes (except the SYNC
byte) is summed together and the 8-bit result is the checksum byte. This is sometimes referred
as Longitudinal Redundancy Check (LRC) in some documentation.

8-bit CRC

This method also adds one byte (8-bits) containing the checksum at the end of each packet.
The calculation of the CRC checksum is a bit more sophisticated than 8-bit checksum and
therefor this is a bit more reliable.

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 10 -

Document revision 1.03

16-bit CRC

This method adds two bytes (16-bits) containing the checksum at the end of each packet. The
calculation of the CRC checksum is similar to 8-bit CRC but a bit more reliable due to the
increased size of the checksum (16-bits).

32-bit CRC

This method adds four bytes (32-bits) containing the checksum at the end of each packet.
The calculation of the CRC checksum is similar to 8-bit and 16-bit CRC but even more
reliable.

FEC

Specific FEC standard to be determined. FEC (Forward Error Correction) is often used in
simplex RF links since it offers the possibility to not only detect but also to correct corrupt
data. There are many different "standards" available.

User specified

If none of the above error detection methods suits your application you can use your own.

A last note on error detection methods supported in S.N.A.P. There are many different error
detection algorithms available. We have chosen some of the most common ones. If you are
interested to learn more details about CRC (Cyclic Redundant Check) calculations we recommend
you to read "A PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS" written by
Ross N. Williams. This document can be obtained from the following URL...

ftp://ftp.rocksoft.com/papers/crc_v3.txt

2.6 CRC polynoms.

Below are the polynoms used for the different CRC error detection modes supported in S.N.A.P.

8-bit CRC (a.k.a DOW CRC)

X^8+X^5+X^4+1

Polynominal = h18
Initial reminder = h00

16-bit CRC (a.k.a CRC-CCITT)

X^16+X^12+X^5+1

Polynominal = h1021
Initial reminder = h0000

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 11 -

Document revision 1.03

 32-bit CRC (a.k.a Ethernet standard)

X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+1

Polynominal = h04C11DB7
Initial reminder = hFFFFFFFF

Note that the result is inverted.

2.7 EDM checkvalues.

Below is a table with pre calculated checksums for all different EDM modes in S.N.A.P. This is
usefull for verifying your own calculation routines. The checksums listed is the result you should
get when performing calculating on the string “SNAP” or “snap”.

?? 111 - User specified
TBDTBD 110 - FEC (specific FEC standard TBD)

h36641D9Eh00F1F02A 101 - 32-bit CRC
h1F4Fh8C43 100 - 16-bit CRC

h17h11 011 - 8-bit CRC
hB2h32 010 - 8-bit checksum

-- 001 - 3 times re-transmission
-- 000 - No error detection

snapSNAPEDM Mode

2.8 Miscellaneous information.

- Address 0 is reserved as a broadcast address and should not be used for anything else.

- All packets must start with a synchronization byte (010101002).

- The synchronization byte is not included in the error detection calculation.

- If a node is capable to use 2 or 3 Bytes DAB it should also be capable to decode 1 or 2 Bytes DAB
 for compatibility.

- If a node is capable to use 2 (or 3) Bytes SAB addresses lengths but configured to use an low
 address that “fits” whitin 1 Byte (i.e 1-255) it should use 1 Byte SAB length for all it’s outgoing
 packets for compability with nodes that only can handle 1 Byte addresses.

- If you are sending packets over media's like power line, RF or IR keep the packets short (less than
 40 Bytes) to improve performance.

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 12 -

Document revision 1.03

3.0 Examples.

Below are some additional examples on how S.N.A.P packets may look like. In the examples the
optional preamble bytes isn't shown. More examples on bit level can be found in appendix A.

Example 1

SYNC Synchronization byte
HDB2 Header Definition Byte 2
HDB1 Header Definition Byte 1
DAB1 Destination Address Byte
SAB1 Source Address Byte
DB1 Data Byte 1
CHK 8-bit checksum

CHKDB1SAB1DAB1HDB1HDB2SYNC

Example 2

SYNC Synchronization byte
HDB2 Header Definition Byte 2
HDB1 Header Definition Byte 1
DAB2 Destination Address Byte 2
DAB1 Destination Address Byte 1
SAB2 Source Address Byte 2
SAB1 Source Address Byte 1
DB2 Data Byte 2
DB1 Data Byte 1
CRC2 High byte of CRC-16
CRC1 Low byte of CRC-16

CRC1CRC2DB1DB2SAB1SAB2DAB1DAB2HDB1HDB2SYNC

Example 3

SYNC Synchronization byte
HDB2 Header Definition Byte 2
HDB1 Header Definition Byte 1
DAB1 Destination Address Byte
SAB1 Source Address Byte
DB1 Data Byte 1
CRC4 High byte of most significant word in CRC-32
CRC3 Low byte of most significant word in CRC-32
CRC2 High byte of least significant word in CRC-32
CRC1 Low byte of least significant word in CRC-32

CRC1CRC2CRC3CRC4DB1DB2SAB1DAB1HDB1HDB2SYNC

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 13 -

Document revision 1.03

Example 4

SYNC Synchronization byte
HDB2 Header Definition Byte 2
HDB1 Header Definition Byte 1
DAB1 Destination Address Byte
SAB1 Source Address Byte
DB8 Data Byte 8
DB7 Data Byte 7
DB6 Data Byte 6
DB5 Data Byte 5
DB4 Data Byte 4
DB3 Data Byte 3
DB2 Data Byte 2
DB1 Data Byte 1
CRC CRC-8

CRCDB1DB2DB3DB4DB5DB6DB7DB8SAB1DAB1HDB1HDB2SYNC

Example 5

SYNC Synchronization byte
HDB2 Header Definition Byte 2
HDB1 Header Definition Byte 1
DAB3 Destination Address Byte 3
DAB2 Destination Address Byte 2
DAB1 Destination Address Byte 1
SAB3 Source Address Byte 3
SAB2 Source Address Byte 2
SAB1 Source Address Byte 1
PFB1 Protocol specific Flag Byte
DB1 Data Byte 1
CRC2 High byte of CRC-16
CRC1 Low byte of CRC-16

CRC1CRC2DB1PFB1SAB1SAB2SAB3DAB1DAB2DAB3HDB1HDB2SYNC

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 14 -

Document revision 1.03

4.0 FAQ - Frequently Asked Questions.

Q. Scaleable? Can't you spell?
A. Since English isn't our native language we sometimes have spelling problems but "scaleable" is
spelled right. Both scalable and scaleable could be used according to the language experts.

Q. Must I have a PLM-24 Power Line Modem to use S.N.A.P?
A. No. S.N.A.P is a generic network protocol and you could use it over any media you like.
Simplest way to get started is to hook up a PC to a microcontroller (or another PC by using a null
modem cable) via the RS-232 port.

Q. When do you want to use zero bytes DAB and SAB?
A. This is useful if you for example connect two microcontrollers directly to each other in a
point-to-point communication. Since there only is two nodes on the "network" there is no need for
any addresses and thus saving protocol overhead.

Q. Must a node support all EDM modes?
A. No, you can choose to just implement one or a subset of them.

Q. What are the best EDM?
A. Selecting correct EDM depends on several factors but we recommend 16-bit CRC as a good
generic EDM. It offers a pretty high degree of security without adding to much overhead.

Q. Should the SYNC byte be included in the error detection calculation?
A. No.

Q. Whats the purpose of the pre-amble bytes?
A. The optional pre-amble bytes is used to calibrate the so called data-slicer in some hardware such
as RF receivers etc.

Q. Must 010101012 be used as pre-amble character?
A. No, you can use whatever pre-amble character you want except for 010101002.

Q. If a node is capable to use 2 or 3 bytes addresses it should also be able to decode 1 or 2 bytes
addresses . Why?
A. What we mean is that both simpler one address byte nodes, and more sophisticated two and three
address byte nodes could co-exist on the same network. For exampel a two address byte node could
communicate with a "one byter" if the "two byter" has an address below 256 and it sends that
address in one byte. So the "two byter" becomes a "one byter" when it's address by such a node.
The same reasoning applies to three versus two and one address byte nodes.

Q. How do I do if I want to send 9-bytes data?
A. Since there isn't any support for 9-bytes data you need to select the nearest higher number of data
bytes supported. In this case 16-bytes.

Q. Is S.N.A.P free to use?
A. Yes, it's totally free to use for anyone but if you intend to use it in any commercial application
you must register a Vendor ID#.

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 15 -

Document revision 1.03

Q. Does it cost anything to register a Vendor ID# for our company?
A. No, just fill in the form on our web-site.

Q. You say S.N.A.P is free, but there is always a copyright notice in the docs. If we implement the
protocol into our system, we must supply the origin docs to the user. So can we distribute your
origin docs with our system?
A. Yes, as long as they are not modified in any way.

Q. Are there any S.N.A.P tools available to speed up the learning process?
A. Yes, on our web-site there are simple program examples that shows how to implement S.N.A.P
in a small microcontroller as well as a free Windows 32-bit DLL that takes care of the encoding and
decoding of S.N.A.P packets.

Q. How do I use the S.N.A.P protocol encoder/decoder DLL?
A. Included in the ZIP-archive is a DLL-documentation that describes how to interface to the
DLL as well as source code examples for Visual Basic 4, Visual Basic 6 and Delphi.

Q. Are there any S.N.A.P tools available for Linux?
A. Yes, a beta version of our S.N.A.P library is available on our web-site.

Q. Are there any S.N.A.P tools available for other operating systems?
A. Yes, we have some test programs for PalmPilot and we are hoping to add support for
DOS embedded systems in the future.

Q. Is the source code for the Windows 32-bit DLL and the Linux library available?
A. No. If you would like to see support for other platforms let us know and we will see what we can
do (no guarantees).

Q. Can I get any support from you?
A. Sorry, we are not able to provide any free support.

Q. What if I find a bug in some of the programs or S.N.A.P tools?
A. We would appreciate if you took the time to fill in the bug report on our web-site. Please include
as much details as possible since we are only able to fix bugs that we are able to reproduce.

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 16 -

Document revision 1.03

5.0 S.N.A.P network protocol history.

1998-09-09 - S.N.A.P Version 0.91 [Preliminary Draft].

First public release.

1999-01-20 - S.N.A.P Version 1.00 [Initial release].

Changes/additions to previous protocol version:

ACK/NAK structure changed.
Removed user specific flag bytes.
Added user specified number of databytes.
Command mode implemented.

5.1 Document revision history.

1998-09-09 - Document revision 0.91 [Preliminary Draft].

1999-01-20 - Document revision 1.00 [Initial release].

1999-12-30 - Document revision 1.01.

2000-02-13 - Document revision 1.02.

2002-01-04 - Document revision 1.03.

6.0 PLM-News mailing list.

If you want to stay up-to-date with S.N.A.P you can subscribe to our PLM-News mailing list. We
will announce updates to the protocol, new products, tips & tricks when available.

To subscribe to the PLM-News mailing list send an e-mail to...

listserv@hth.com

with the following in the body...

subscribe plm-news <e-mail address>

Substitute "<e-mail address>" with your own e-mail address.

After you subscribed you will receive a confirmation via e-mail and there after receive every issue
of PLM-News.

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 17 -

Document revision 1.03

6.1 More information.

More information about S.N.A.P and the PLM-24 Power Line Modem can be found at the URL's
given below. If you are interested to implement S.N.A.P in any commercial application please send
e-mail for free licensee registration.

info@hth.com

Information about S.N.A.P and PLM-24 Power Line Modem can be found at...

http://www.hth.com/snap/
http://www.hth.com/plm-24/

6.2 Feedback and suggestions.

If you have any comments or suggestions or have any program examples that are using S.N.A.P
and want to share them with others please feel free to contact us by e-mail. We are looking forward
to hear from different people using S.N.A.P and if you send us a short story about your use and we
may publish it on our web (with your consent of course!).

snap@hth.com

6.3 Special thanks.

Special thanks to the following people for their ideas and comments.

Claus Kühnel
Mats Ekberg

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 18 -

Document revision 1.03

Disclaimer of Liability.

S.N.A.P AND ANY RELATED DOCUMENTATION IS PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NONINFRINGEMENT.

IN NO EVENT SHALL HTH OR ITS SUPPLIERS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY BREACH OF
WARRANTY, OR UNDER ANY LEGAL THEORY, INCLUDING LOST PROFITS,
DOWNTIME, GOODWILL, DAMAGE TO PERSON OR REPLACEMENT OF EQUIPMENT
OR PROPERTY, AND ANY COST OR RECOVERING, REPROGRAMMING OR
REPRODUCING OF DATA ASSOCIATED WITH THE USE OF THE HARDWARE OR
SOFTWARE DESCRIBED HEREIN, EVEN IF HTH HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Copyright © 1998-2002 by HTH All rights reserved. PLM-24 and S.N.A.P are trademarks of
HTH. Other brands and product names mentioned are trademarks or registered trademarks of their
respective holders.

S.N.A.P - Scaleable Node Address Protocol

Copyright © 1998-2002 HTH
- 19 -

Document revision 1.03

Overview of header definition bytes (HDB2 and HDB1)

NNNNEEECAAPPSSDD

01234567Bit01234567Bit

HDB1HDB2

See section 2.0 in the manual for a detailed description of each bit position in HDB2 and HDB1. The following examples shows several packets on a
bit level, to make it easier for the S.N.A.P beginner.

Example 1 - Packet size 8 Bytes

In the example below the transmitting node has address 000000012 and is sending data 111111112 to node 000000102. Since no acknowledge is
required the transmitting node will not expect any ACK or NAK packet in return.

Packet structure.

DD=01 - 1 Byte destination address
SS=01 - 1 Byte source address
PP=00 - No protocol specific flags
AA=00 - No ACK request
C=0 - Command mode not supported
EEE=100 - 16-bit CRC
NNNN=0001 - 1 Byte data

Packet sent from node 000000012

 1 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0

CRC1CRC2DB1SAB1DAB1HDB1HDB2SYNC

S.N.A.P - Appendix A

Copyright © 1998-2002 HTH
- 20 -

Document revision 1.03

Example 2 - Packet size 8 Bytes

In the example below the transmitting node has address 000000012 and is sending data 111100002 to node 000000112. This time acknowledge is
requested and the transmitting node expect to receive an ACK or NAK packet, else it should time-out and take proper action.

Packet structure.

DD=01 - 1 Byte destination address
SS=01 - 1 Byte source address
PP=00 - No protocol specific flags
AA=01 - ACK request
C=0 - Command mode not supported
EEE=100 - 16-bit CRC
NNNN=0001 - 1 Byte data

Packet sent from node 000000012

 0 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0

CRC1CRC2DB1SAB1DAB1HDB1HDB2SYNC

ACK packet returned from node 000000112

 1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0

CRC1CRC2DB1SAB1DAB1HDB1HDB2SYNC

NAK packet returned from node 000000112

 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0

CRC1CRC2DB1SAB1DAB1HDB1HDB2SYNC

Note: Red color indicates changed bits/bytes.

S.N.A.P - Appendix A

Copyright © 1998-2002 HTH
- 21 -

Document revision 1.03

Example 3 - Packet size 9 Bytes

In the example below the transmitting node has address 000000012 and is sending data 111100002 to node 000000112. This time to, acknowledge is
requested and the transmitting node expect to receive an ACK or NAK packet, else it should time-out and take proper action. Further more one byte of
protocol specific flags are used, these flags are set to 000000112 in PFB1. Also note that the ACK/NAK packet returned contains 0 Byte data.

Packet structure.

DD=01 - 1 Byte destination address
SS=01 - 1 Byte source address
PP=01 - 1 Byte protocol specific flags
AA=01 - Acknowledge is required
C=0 - Command mode not supported
EEE=100 - 16-bit CRC
NNNN=0001 - 1 Byte data

Packet sent from node 000000012

 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0

CRC1CRC2DB1PFB1SAB1DAB1HDB1HDB2SYNC

ACK packet returned from node 000000112

 0 0 1 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0

CRC1CRC2PFB1SAB1DAB1HDB1HDB2SYNC

NAK packet returned from node 000000112

 0 1 1 1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

CRC1CRC2PFB1SAB1DAB1HDB1HDB2SYNC

Note: Red color indicates changed bits/bytes.

S.N.A.P - Appendix A

Copyright © 1998-2002 HTH
- 22 -

Document revision 1.03

S.N.A.P examples.

Below is a list of examples currently available for download. The S.N.A.P examples includes
schematics and well documented source code so they should give you an easy start. In some
examples there are room for much improvement and possibility to add more functionality, we kept
it as simple as possible for easy understanding.

WIP = Work In Progress

More to come...---

Testprogram for S.N.A.P Serial for PalmPilot1.00BS2-ICSNAP-026

S.N.A.P packet spy node for PLM-241.0289C2051SNAP-025

Simple 16 x 1 LCD info node for PLM-241.0289C2051SNAP-024

Simple 16 x 1 LCD terminal node for PLM-24 1.0289C2051SNAP-023

1-channel 8-bit A/D converter node 1.02BS1-ICSNAP-022

Fire alarm node for PLM-24 1.02BS2-ICSNAP-021

DCF-77 atomic clock node for PLM-24WIPBS2-ICSNAP-020

1-8 zones security system node for PLM-241.02BS2-ICSNAP-019

Four channel relay node with local control 1.02BS2-ICSNAP-018

IR detector alarm node for PLM-241.02BS2-ICSNAP-017

Turn a LED on and off 1.0289C2051SNAP-016

Programmable light monitor node for PLM-24WIPBS2-ICSNAP-015

8-bit parallel input node for PLM-24 1.02BS2-ICSNAP-014

PLM-24 to X-10 Gateway1.02BS2-ICSNAP-013

Shows how to implement background tasks1.02BS2-ICSNAP-012

Turn a LED on and off 1.02BS2-ICSNAP-011

Four channel plant moisture sensor I1.02BS1-ICSNAP-010

WakeUp alarm node for PLM-241.02BS1-ICSNAP-009

Simple 4-bit input node for PLM-241.02BS1-ICSNAP-008

Simple humidity node for PLM-241.02BS1-ICSNAP-007

Air quality node for PLM-24 1.02BS1-ICSNAP-006

Simple light measuring node for PLM-241.02BS1-ICSNAP-005

Simple temperature node for PLM-241.02BS1-ICSNAP-004

Domestic AC current meter with PLM-241.02BS1-ICSNAP-003

Lampdimmer node for PLM-241.02BS1-ICSNAP-002

Turn a LED on and off 1.02 BS1-IC SNAP-001

DescriptionVer.MCUName

S.N.A.P - Appendix B

Copyright © 1998-2002 HTH
- 23 -

Document revision 1.03

 Distributor:

High Tech Horizon
Asbogatan 29 C

S-262 51 Angelholm
SWEDEN

E-mail: info@hth.com
WWW: http://www.hth.com

